Research and Developments in Thin-Film Silicon Photovoltaics
نویسندگان
چکیده
The increasing demand for photovoltaic devices and the associated crystalline silicon feedstock demand scenario have led in the past years to the fast growth of the thin film silicon industry. The high potential for cost reduction and the suitability for building integration have initiated both industrial and research laboratories dynamisms for amorphous silicon and micro-crystalline silicon based photovoltaic technologies. The recent progress towards higher efficiencies thin film silicon solar cells obtained at the IMT-EPFL in Neuchatel in small-area laboratory and semi-large-area industrial Plasma Enhanced Chemical Vapor Deposition (PE-CVD) systems are reviewed. Advanced light trapping schemes are fundamental to reach high conversion efficiency and the potential of advanced Transparent Conductive Oxides (TCO) is presented, together with issues associated to the impact of the substrate morphology onto the growth of the silicon films. The recent improvements realized in amorphous-microcrystalline tandem solar cells on glass substrate are then presented, and the latest results on 1 cm cells are reported with up to 13.3 % initial efficiency for small-area reactors and up to 12.3 % initial for large-area industrial reactors. Finally, the different strategies to reach an improved light confinement in a thin film solar cell deposited on a flexible substrate are discussed, with the incorporation of asymmetric intermediate reflectors. Results of micromorph solar cells in the n-i-p configuration with up to 9.8 % stabilized efficiency are reported.
منابع مشابه
An Introduction to the Technology of Thin Film Silicon Photovoltaics
− Several aspects of the science and technology of thin film silicon for photovoltaic applications will be presented. The potential advantages of this technology over crystalline wafer technology will be discussed. A basic understanding of the material properties of thin film silicon layers enables to assess their potential and limitations when used in photovoltaic devices. A brief review of th...
متن کاملDeconvoluted Si 2p Photoelectron Spectra of Ultra thin SiO2 film with FitXPS method
The main impetus for our research is provided by the growing interest worldwide in ultra thin silicon dioxide on silicon based nano devices. The obvious need for better knowledge in the ultra thin gate silicon dioxides, is motivated both by interests in fundamental research and phenomenology as well as by interests in possible applications, which can be found with better fitting of experimental...
متن کاملPlasma physics and chemistry for processing high quality thin film silicon at high deposition rates
M. Kondo, S. Nunomura and T. Matsui Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
متن کاملOhmic Contact of Cu/Mo and Cu/Ti Thin Layers on Multi-Crystalline Silicon Substrates
Cu-Mo and Cu-Ti contact structures were fabricated on multi-crystalline silicon substrates to provide a low resistance ohmic contact. Deposition steps are done in an excellent vacuum chamber by means of electron beam evaporation and samples are then annealed for the realization of an efficient alloy layer. The effects of process parameters such as film thickness, annealing duration and temp...
متن کاملLaser applications in thin - film photovoltaics
We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be ...
متن کامل